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The problem of plane steady waves of finite amplitude generated by pressure periodically 
distributed over the surface of a heavy fluid of infinite depth was first formulated by 
Stretenskii in 1953 [l] who also gave its approximate solution. The exact solution of this 
problem was presented by the Author for an infinitely deep stream in papers [Z, 31 and 
also for streams of finite depth in [4-S]. 

All of these papers had investigated waves which cease to exist when the periodic part 
of the pressure distributed over the stream surface vanishes and the flow becomes uniform. 

We shall call such waves induced. Waves of constant amplitude occurring at particular 
flow velocities under conditions of constant pressure over the whole surface will be called 
free waves. An exact solution of the problem of these waves was first given by Nekrasov 
in 1921 [7]. 

The possibility of a simultaneous occurrance of these two kinds of waves of small finite 
amplitude in a steam of infinite depth at particular flow velocities is established below. 
We shall call such waves composite waves. When the periodic part of the pressure distri- 
buted over the surface vanishes, such waves are transformed into free waves. 

The general method of computation of characteristics of these waves is presented. 
The complete computation of the first three approximations, and an approximate equa- 

tion of the wave profile are given. 
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1. Statement of problem and derivrtion of the fundrmentrl 
equation. We shall consider a plane-parallel stationary motion of a perfect incom- 
pressible heavy fluid bounded from above by a free surface under pressure p = p,,’ + 

+ p. (s),where po’= const,and p. (z) is a specified periodic function of the horizon- 
tal coordinate 5. We shall assume that the fluid flows from let to right at a given con- 
stant velocity c at an infinite depth. Induced waves, as had been already stated in the 

introduction. do occur at any velocity C in the presence of the p. (z) term, while in the 

absence of p. (z) free waves appear at special values of C. 

We shall assume that the pressure on the free surface contains these two components, 

and that in these conditions the form of the free surface in a system of coordinates 

attached to a progressing wave moving from right to left at a certain special velocity, 

is that of a periodic steady wave. If these waves do not vanish at PO (x) EE 0, we shall 
call them, as previously indicated, composite waves. 

Let the looked for composite wave and pressure p. (5) be equally symmetric about 
the vertical through the wave crest. We superpose the y -axis on the axis of symmetry 
and direct it upwards. We locate the coordinate origin 0 at the intersection point of 
the y-axis with the free surface,and direct the z-axis towards the right. 

The zy-plane of flow will be taken as the plane of the complex variable z = z + iY. 

We introduce the usual notation: q the velocity potential, 9 the stream function, w = 
= cp + i$ the complex potential of velocities, and d’ and I’ the projections of the 
velocity vector q onto the coordinate axes. We then have 

dw 
- - U + iv, z- 

For the derivation of the problem fundamental equation from the boundary condition 
we shall first map the region occupied by one wave represented by an infinite vertical 

half-strip bounded at the top by a wavelike curve onto the half-strip 0 < cp < ch, 
0 < II, a< 00 in the w-plane, and then map the latter onto the interior of a unit circle 
with its center at the coordinate origin of plane u = ur + ius. The wavelength h is 

assumed to coincide with the period of function p. (r). 

The latter conformal mapping is given by formula 

w=+4 (1 .I) 
As the result of this the wave profile is transformed into the unit circle circumference 

slit along radius arg u = 0. 
The mapping of circle 1~1 < ‘l onto the single wave plane z is carried out by means 

of formula 
dz 
a= 

a f(U) -- 
2ni T * f(u) = 1 + i a# (1.2) 

k=l 

The a,coefficients are real because of the wave symmetry relative to the y -axis, 
and a0 = 1 due to the stream velocity at infinity being equal to c and directed along 

the z-axis. 
Considering that at the surface p = po’ -j- PO (z) and using the Bernoulli surface 

integral, we find from (1.2) by differentiating with respect to 0, 

1 dp,, dx dy __...--~--c7-- 
p dx d0 b d0 

(u = e’e) (1.3) 
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Here 8 is the position vector angle with the u,-axis, p is the density, g is the acce- 
leration of gravity and Q is the module of velocity vector q. 

Introducing, as usual, function [7] 

w (u) = @ + ir = - i In f (u) (1.4) 

we obtain by virtue of (1.1) and (1.2) du 

- -z --& >-m IQ, 
d,_ 

(1.5) 

Hence, function @ is throughout the stream equal to the angle between vector q and 
the L -axis, and q E ces (1.6) 

From (1.4) and (1.2) we find that for u -z e ig 

$ + i g = - &q : ce) (cos CD + i sin CD) (1.7) 

By virtue of this and of (1.6) we obtain from Eq. (1.3) 

(1.8) 

(1.9) 

where p?is the constant of integration, and 

p = _?!$ e-3? ((1) (1.10) 

Parameter p is associated at the surface to p,,’ by the additive constant of p . 
From (1.9) we have 0 

rEz 
lJH ‘@ ‘0; Q @)I [I + p \ H [CD, Q] dq] 

-1 

zi’ 
(1.11) 

where ,I 

H t@ (0), Q @)I = sin @ (0) + Q ((3 ~0s @ (6) (1.12) 

Q (0) = ; ‘2 

Equality (1.11) defines the relationship between functions T (8) and @ (0) along the 
dircumference IuI = 1. 

As function 7 (8) is symmetric about the real axis, hence T: (0) = ‘G (2n; - 0). 
From this follows the known Dini’s relation 

zx rEz 
Q(e) = 3 \ 

” q~ h e) a 
0 

The arbitrary constant has been omitted here because the tangent to the 
horizontal. The kernel K (v, 0) is of the form 

sin nq sin nf3 
372 

(1.13) 

wave crest is 

(1.14) 

It follows from (1.14) that the normalized eigenfunctions (Pi (f3) and the eigenvalues 

‘v,of kernel K (q, 0) are defined by formulas 

(Pn (e) = $i$ , v, = 3n (1.15) 

Finally, from (1.11) and (1.13) we have 
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which is the integral equation of this problem,. From it we obtain for p = PO’ = const 

the known Nekrasov’s equation [7]. 

When solving the composite wave problem we shall assume that 

(1.17) 

Here E is a small dimensionless parameter and d, are given real numbers, with expan- 
sion e3 d, + E* d, + . . . i_ Cd,, + . . . 
convergent in a circle of radius &o > 0; d, < 0 is assumed (see Note in Sect. 3). 

We recall that in the initial statement of the problem PO (Z) was assumed to be a 

given periodic function of I. It can be however shown that the solution of the problem 

here considered with condition (1.17) taken into account is equivalent to spcifying 
expansion co 

__LdPo=_ 2 
pg dx 

&n+2C,’ sin Fz 
n=1 

(c,’ = i PC,,) 
m=o 

Here coefficients con’ may either be considered as given and used for the computation 
of d,, or vice versa ; coefficients Cmn’ (m = 1, 2,...) are determined by d, (see 
(3.7) in Sect. 3). 

If however one assumed d, = d,, + d,, E + d2,, E2 +. . . (this is not the case here), 

then c,,,,,’ (m = 1, 2, 3,. . . .) may be taken as given and used for determining di, 
(i = I,2 ,... ), or vice veisa. 

we also note that function Q (6) of the form of (1.17) may be specified for the deter- 
mination of an induced wave in the case of p0 = Ye; this would yield the solution in 
the form of a series expansion in integral powers of E. 

We transform Equality (1.10). Function ‘G (0) will be even along circle 1 u 1 = 1 , 
a.nd function @ (0) will be odd. Hence we assume 

cc co 

Q (e) = 2 b, sin ke, T (e) = -2 2 bicos ke 
k=l k=l 

Here b, = 0 because o (0) = 0 (see (1.2) and (1.4) ). 
Consequently (1.10) will be of the form 

(1.18) 

(1.19) 

The equation of the form of (1.19) was used for the determination of p in the induced 
wave problem in p]. where the solution is given for the cases of p0 # Y, and p. = ~1. 
For a free wave Eq. (1.19) is of the form 

P = Po(i - @) exp (3 i h) , 
3gh 

PO = VI = znc,2 (1.20) 
k=l ’ 

if we assume 
1 

_!- (1 - e2) 7 = c,2 (1.21) 
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where c&s the initial wave velocity. 
We note that Nekrasov [7] had specified p = Yr + CL’ and found the solution, includ- 

ing that of i/C2 in the form of expansions in powers of p’. Specifying l/c2 in the form 

of (1.21), the solution, including that of p,has the form of expansions in powers of E. 

In order to pass from one form of solution to the other it is necessary to express parame- 
ter y’in terms of e , or vice versa. 

When considering a composite wave, we shall express I/c.~ by means of formula (1.21), 

and consequently, ~1 by (1.20) with E being the same small parameter as in (1.17). 
It will be seen from (1.21) that a2 defines a small variation of the specified value of 

I/c,~. We could have substituted in (1.21) factor (1 - a’&“) for (1 - Ed). This would 

have resulted in the solution yielding an induced wave for a = 0 and Q (6) qk 0 . 
However in order to simplify computations we have assumed a = 1. Assuming further 

that 

(1.22) 

where H [O, Ql conforms to (1.12), we reduce Eq. (1.16). as in the case of Nekrasov’s 
equation [7], to the following equivalent system of two equations for the unknown func- 

tions @ (0) and y ((I): 2,” 

6(e) = P \h’ (rl, 0) H [@(rl), Q WI ‘f’-(q) dv (1.23) 
; 

y w = 1 - P 1 y2 Pl) If [@ (rl), Q ol)l a 
0 

(1.24) 

The problem is thus reduced to the determination of functions @ (8, &) and Y (6, 8) , 
and of parameter p (8) satisfying Eq. (1.23), (1.24) and (1.20). 

2. Derivation of tolution of the brtlc Byrtcm in the form of 
eerier exprntion8 in power8 of e. We shall look for the solution of the basic 

system and of parameter p in the form of series expansions in powers of & as follows: 

Q, (e) = 5 ~nm* (e), 
(2.1) 

y(e)= $xY-,(e). yo= I, p=po+ REV, 
7l=l 7.=0 ,,==I 

In order to derive the equation which would make possible the determination of coef- 
ficients of the first two of these expansions it is necessary to substitute expansions (2.1) 
into (1.23) and (1.24), and then expand the result into series in powers of E and equate 
in the obtained relationships coefficients of same E”. 

This necessitates the expansion of sin 0 ($ and &a @ (q) into series of powers of 
e, taking into account (2.1). The first of these expansions will be of the form 

In=1 Tll=l Li_l J n=1 

Am-1 = (!2;‘)mj;l) 
If we do not substitute values of A%,_1 at m > 1, and because of Ar 

Sl ==. @I, s, = @'2, s3 = @3 + A3@13, s, = @4 +q33 

s, = Q, + A33~,2@,2 + A,3cD3’D12 + A$DIs 
. . . . . . . . . . . . . . . . . . . . . . . . . . 

(2.2) 

= l,wehave 

@>(D2 
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Here ai are positive integers including zero which satisfy relations 

CIr +as + . ..+a. = 2m - 1, 01~ +2a, +...+nun = n (2.4) 

The second expansion is of the form 

If we do not substitute values of A,,,, at m > 1, and because of Aa = 1, we obtain 

co.= 1, c1 = 0, c, = A,012, c3 = A,2Q>,@a 

c, = A,014 + A,2@,@, f A,Oza 

c, = A,4@130z + A,20,,01 + A,24DzO,, 
. . . . * . . . . . . . . . . . . . . . . . . . 

Relations (2.4) hold for ai , if in the first of these 2m is substituted for 2m - 1 , 
We revert to Eq. (1.25) which will be used for defining p (e) in the form of expansion 

(2.1). We assume p. = vr, and take El, (n = ~,2,3,...) as defined by (1.25). We 
shall adduce the recurrent formulas used for the determination of pi. It follows from the 

construction of function Q, and (1.18) that 
Co 00 co 

b1 = 2 bl,@, ba = 2 b2,,&“, . . ., bk = 2 b,# 
n=2 7;=k 

If we assume that bil = 0 for j < i,we obtain 

br = 5 &en, b, = 5 b2#, . . a8 b, = i bhnen 

Hence 
7l=l 71-l z=11 

bl+ bs + . . . + bi + . . . = ,$ (h, + bzn + . . . -I- h,n) En 
z-1 

(2.7) 

exp[3@r+bs+ ... + bk + . . .) I = exp [3 5 (br, + ban + . . . + b,,) en] 

Let 
I;=1 

exp 
II 

3 5 (bt, + b,, -I- . . . + bnn) en] = $$ E?, (2.81 
?I=1 7L=O 

Then it can be shown that 

e, = + f$ j (b,j + b,j + . . . + bjj) en-j 
3=1 

(e, =: 1) (2.9) 

Substituting into (1.25) the expansion of p and expansion (2.8) and equating coeffici- 
ents of en, we find 

pn = p. (e, - en-z) (2.10) 
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We have to assume here that em2 = e_, = 6. 
We pass to the solution of equations of Qn (e), Y,, (0) andpn. These equations are 

derived in the manner indicated above by using the adduced expansions. Omitting inter- 

mediate computations, we write these equations in their final form. 

2. 1. Determination of 4>, (e), Yi (0) and pl. For these functions we have 
the system 2x 9 

@l (0) = po s K (% 0) @l(7) Q, 5(e) = -P~S~~(WY (w 

0 ,I 

As pLo = vi = 3, therefore the solution of the first equation which is a homogeneous 
linear Fredholm’s integral equation of the second kind, is 

a1 (e) = Cl1 sin 8, Cl1 = z (2.12) 

Constant C,, , as will be shown in the following, is determined by the solvabiIity con- 
dition of the equation of @s (0). 

Substituting C& (0) defined by (2.12) into the second of Eqs. (2.11) we find 

Ypl (e) = - poCll 1 sin qdr~ = 3CII (COS 8 - 1) (2.13) 

As e, = 1, hence for the determination of pr we have from (2.10) 

e, = 36,,e, = 3C,,, pl = Poe1 = 9GI (2.14) 

2.2. Determination of @a ((I), Yz (0) and pa. These functions are to be 
derived from system 2x 

(2.15) 

U!’ 
12 = - 5 Lpd42 (v) + @I (q) (p1+ $o’J”l (rl))l a 

(2.16) 

where 
I, 

P, (11) = “/2Cl,a sin 211 (2.17) 

By adding p2 (0) to the two sides of Eq. (2.15) we obtain its equivalent equation. 

By the third of Fredholm’s theorems the solvability condition of the latter, and conse- 
quently also of Eq. (2.15) is of the form 

277 

s 0 
P2 (q) 2 dTj = 0 (2.18) 

It is fulfilled by virtue of (2.17). Hence the solution of Eq. (2.15) is 

m ai,% (0) 
m2(e) = &sine+ p. 2 yi T 

i=z 

Cl2 = J+ 
n 

ax 
(2.19) 

42 - - s p2 (rl) ‘pi (rl) a 

Constant C1, is defined by the solvability condition of @, (0). 
By virtue of (2.17) we obtain from (2.19) 

ai = 0 (i = 3, 4, 5,‘. . .) a22 = “I2 CI12 I/ii 

Substituting these expressions into formula (2.19), we obtain 

(2.20) 
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as ((3) = C,, sin 8 + C,, sin 20 (Cm = 3/2Cn2) (2.21) 

Substituting mZ (0) f rom (2.21) together with obtained values of the remaining mag- 
nitudes into Eq. (2.16), we obtain after necessary computations 

‘r, (e) = (3 C,, - 9 CnZ) ( cos 8 - I) + *y4 c,,2 (COS 28 - 1) (2.22) 

In order to determine p2 we set n = 2 in (2.9) and (2. lo), then 

e2 = "/2 Uw, + 2&2 + b22h17 p2 = p. (e2 - eo) (2.23) 

Because 
hl = Cl17 bl2 = Cl29 b22 = c22 (2.24) 

and taking into account (2.14) we obtain from (2.23) 

% - 3 (3Cn2 + Cl,), p2 = 3 [3(3C,12 + C,,) - 11 (2.25) 

2. 3. Determination of @, (e), Y3 (e) and pa. In this case we obtain the sys- 
tem 2x 

ah (e) = p. S K m, 0) I@~ h) + p3 m drl (2.26) 
0 

8 

where 

(2.27) 

p3 (9) = G3 - C,, + dJ sin 11 + 3C,,C,, sin 27 -t 17/3 CiI13 sin 3~ (2.28) 
The solvability condition for Eq. (2.26). similar to that for (2.18), reduces to specify- 

ing the absence in Eq. (2.28) of the term containing sin q. Equating the coefficients 
of this term to zero, we have 

c,,3 - c,, + d, = cl (2.29) 

As will be explained later (see Note at the end of Sect. 3). the nature of this problem 

necessitates that C,, > 0. Analysis of the roots of the incomplete cubic equation(2.29) 

had shown that only one root C,l > 0 corresponds to d, < 0 . We would point out 

that for dt = 0 (and because C,, # 0) Eq. (2.29) reduces to a quadratic equation 
which defines cl1 in the case of a free wave. 

With condition (2.29) satisfied, the solution of Eq. (2.26) is obtained from a formula 
analogous to (2.19), and is if the form 

where 
O3 (0) = C,, sin 8 + C,, sin 28 + C33 sin 38 (2.30) 

Cl3 = G3’/ v/n, c23 = 3&&21 c33 = “/6 Cl,” (2.31) 
is assumed. 

After substitution into (2.27) of all of the derived values and completion of computa- 
tion, we obtain 

\r3 (e) = 3 (cl3 - cI1 + 3x cd - 6cIIcIa + d,) (COS e - 1) + 
+ 2’/2 (c11C12 - 3/2 CL13) (cos 28 - 1) + 13’/* CI13 (cos 38 - 1) (2.32) 

Using (2.9) and (2.10) with n = 3 , we obtain after computation 

p3 = 15’12 c,,3 + =‘&c,, + gc,s - gc,, (2.33) 
2. 4. Determination of further approximations. We do not adduce 

further computations. We shall however indicate that 
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Cl, = 0 (2.34) 

Gi = - & (1*59/~~ Cu5 - 446/4 C,13 + ‘/s WII + ‘O’/B U’,la - 3A) (2.35) 

The value of (2.34) is obtained from the solvability condition of the equation of 

m4 (e), and that of (2.35) from the solvability condition of the equation of CPa (0). 
This had necessitated a complete computation of the fourth, and a partial computation 

of the fifth approximations. 

we shall also note that coefficient Cl, = C,,,‘/V/- JC is determined from the solvabi- 
lity condition of the equation of @,,+% (8) , and will appear in that condition as a linear 

factor in the addend (%&’ - 3) Cl,,; the remaining terms of this condition are 

known. 
2. 5. Approximate expression of Q> (0). Substituting into the first of for- 

mulas (2.1) the values of @ (0) from (2.12), 0, (0) from (2.21), and @a (0) from 
(2.30). we obtain 

0 (0) = E C,, sin 8 + e2 C,, sin 28 + E’ (C,, sin 8 + C,, sin 38) (2.36) 

Here C,, is the positive real root of Eq. (2.29) ; .C,, is defined by formula (2.35) ; 
C,, and cs3 are expressed by formulas (2.21) and (2.31) ; it is also taken into account 

that by virtue of (2.34) and (2.31) we have Cl, = Cz3 = 0 . 

3. Determinrtion of the WIVO profile. Separating in(1.7) the real and 
imaginary parts and integrating, we obtain the expression of the wave profile of the 

parametric form as follows: 
‘9 e 

b 
x=--x s e-‘cn)coscD(q)dg, y= -& 

c 
fV(Qsin@(q)dq (3.1) 

0 6 

From this, using formula (2.36) for @ (?j), and the second of formulas (1.18) for z (TJ) , 
we obtain the approximate equation of the wave profile. Omitting intermediate com- 

putations, we find 

x= - f/,h3t-'{e + dll sin 8 + e*l/,(C,, + Cl12) sin 28 + 

+ 83 WI3 sine + V3 (C,, + C&* + % W) sin 3ell (3.2) 

y = 1/s AJC-~ { eCll (COS 8 - 1) + wgvSI +:hw) (00~28 - 1) + 
+ E~C,~(COS~ - 1) +v3(cs3 + c,c,,+v6w (Oos3e - ~1) (3.3) 

In order to present the wave profile equation in the form of y = y (2, e), we elimi- 
nate 8 from Eqs. (3.2) and (3.3). For this we shall attempt to express 8 (z, 8) in Eq. 
(3.2) in the form of a function of 2 and E expanded into series in powers of e the coef- 

ficients of which are 
8 (z, 0) = - 2+1, ($)cEo, . 

E=o 
the derivatives are obviously easily determined. 

The equation of the profile is to be looked for in the form as follows: 

y (x, e) = y (5, 0) + ($)o~ + 4 (+!&). 9 + & (s). es + . - - t3s4) 
Here (d”y/de”), = (dny/d&“),,o is assumed, and z is considered to be a parameter. 

Magnitudes appearing in the right side of (3.4) are determined from Eq. (3.3). 
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Differentiating this equation with respect to 8 as a composite function, we derive the 

expression of (fly/den) o in terms of 8 (2, 0) = - (2nlhs) and (8”Bl&?),,, with 
the latter magnitudes already determined as previously stated. 

Having carried out all these computations, we substitute the obtained expressions of 

derivatives of y (2, e) into (3.4), and assuming k = 2n/h, wk obtain the required equa- 
tion 

y (2, e) = k-l {q C,,(cos kx - 1) + ‘1s ea Cl,’ (~0s 2kx - 1) + (3.5) 
+ vs ES [(tic,, + a7/p cl13) (cos kx - 1) + Vr C,l a (~0s 3kx - I)] 1 

By applying the procedure used for deriving Eq. (3.5). we find from (1.17) with the 

use Of @02) thatQ (z, E) = - e3 di sin kx - e4 (d, - 1/Z dlCll) sin 2kx + (3.6) 

+ l/a es [ (% 4W - 2dsC,,) sin kx + (1/p dlClla + 2dsCll - 2d6) sin 3kx] 
This formula confirms the statement in Sect. 1 made with respect to expression (1.17). 
Note . In accordance with the conditions of this problem stated in Section 1 the 

coordinate origin SOY is located at the wave crest. Hence, for values of,x close to zero, 

y must be negative. It follows from (3.5) that this is fulfilled for Cl1 > 0 only. On the 
other hand, in the case of an induced wave [Z] Cl1 =- d;/$, hence the condition that 
C,, > 0 , which is valid in this case also, is fulfilled for dl < 0 only. We retain the lat- 

ter inequality also for the case of a composite wave (see Sect. 1). 

4. The existence rnd uniqueneca of the solution of the problem. 
The following theorem may be established with the use of the Liapunov-Schmidt methods 
and their further developments [8]. 

Theorem. The system of Eqs. (1.23), (1.24) and (1.20) has for pa = %‘I a unique 
solution @ (0, E), ‘r(e, a) and p (e) which is small with respect to i,and continuous 
with respect to 8 (0 < 8 .< 2~) , and this solution is an analytical function of e for 

I& i < El < 80. 
We shall not give here the proof of this Theorem. We shall only note that it is carried 

out in a manner similar to that used in [S]. 
This Theorem establishes the absolute and uniform convergence of expansions (2.1). 

The convergence of the expansion of ‘t (0, E) follows from the Theorem in conjunction 
with formula (1.11). The convergence of the series expansions in powers of .e of the 
integrands in formulas (3.1) and (3.2) follows from the general theorems of analysis 
related to the substitution of expansions into expansions. The convergence of expansion 
(3.5) is also based on these general theorems. 
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Motion of two spheres in a perfect incompressible fluid is considered. Kinetic energy 
and hydrodynamic forces are computed for the case when the distance between the 
spheres is small, in particular when the spheres touch each other. Singularities arising 

in the velocity field on contact of the spheres are determined. 
Hicks [l] obtained the kinetic energy of the fluid for the spheres moving along the 

line-of-centers (the line joining the sphere centers). The kinetic energy for the case 
when the spheres move in the direction perpendicular to the line-of-centers and the dis- 
tance separating them is much larger than their radii, is known from [2]. 

1. Velocity potential. Two spheres move in a perfect incompressible fluid 
which is at rest at infinity. The fluid motion is assumed potential. Since the problem 

is linear, the case when the velocities of the spheres 

‘; ? 

% % 

@%!Y 

are coplanar, is sufficient to obtain the velocity 

potential. 

ef 
% 

We choose the spherical system of coordinates 

a e ri, 8,, ‘pi with the origin at the center of the i th 

uz sphere (i = 1, 2) and the positive directions of 
their polar axes oriented towards the neighboring 

sphere (Fig. 1). Azimuthal angle cp i is measured 

Fig. 1 
from the direction perpendicular to the velocities 
of the spheres, and the positive direction of the 

polar axis of the ith coordinate system is taken as positive direction of the projection 
ui of the velocity on the line-of-centers. Positive directions of the projections v, and v, 
of the velocities of the spheres on a line perpendicular to the line-of-centers, are chosen 


